95. Deriving a genetic regulatory network from an optimization principle
Sokolowski TR, Gregor T, Bialek W, Tkačik G
Proc Nat’l Acad Sci USA (2024): in press
[ arXiv ]
94. Pulsatile basal gene expression as a fitness determinant in bacteria
Jain K, Hauschild R, Bochkareva OO, Roemhild R, Tkačik G, Guet CC
bioRxiv.org (2024): 615870
[ bioRxiv ]
93. Learning reshapes the hippocampal representation hierarchy
Chiossi HSC, Nardin M, Tkačik G, Csicsvari JL
bioRxiv.org (2024): 608911
[ bioRxiv ]
92. Linking molecular mechanisms to their evolutionary consequences: A primer
Grah R, Guet CC, Tkačik G, Lagator M
Genetics (2024): in press
[ bioRxiv ]
91. Chromatin enables precise and scalable gene regulation with factors of limited specificity
Perkins ML, Crocker J, Tkačik G
bioRxiv.org (2024): 598840
[ bioRxiv ]
90. Quantitative omnigenic model discovers interpretable genome-wide associations
Ružičková N, Hledík M, Tkačik G
Proc Nat’l Acad Sci USA 121 (2024): e2402340121
[ site ] [ bioRxiv ] [ pdf ]
89. Information content and optimization of self-organized developmental systems
Brückner DB, Tkačik G
Proc Nat’l Acad Sci USA 121 (2024): e2322326121
[ site ] [ arXiv ] [ pdf ]
88. Dynamic pathogen detection and social feedback shape collective hygiene in ants
Casillas-Perez B*, Bod’ova K*, Grasse A, Tkačik G, Cremer S
Nature Communications (2023): 3232
[ site ]
87. Path Weight Sampling: Exact Monte Carlo Computation of the Mutual Information between Stochastic Trajectories
Reinhardt M, Tkačik G, ten Wolde PR
Phys Rev X 13 (2023): 041017
[ site ] [ arXiv ]
86. The structure of hippocampal CA1 interactions optimizes spatial coding across experience
Nardin M, Csicsvari J, Tkačik G, Savin C
J Neurosci 43 (2023): 8140-8156
[ site ] [ bioRxiv ] [ pdf ]
85. Statistical modeling of adaptive neural networks explains coexistence of avalanches and oscillations in resting human brain
Lombardi F, Pepić S, Shriki O, Tkačik G, De Martino D
Nat Comput Sci (2023): 254-263
[ site ] [ arXiv ] [ pdf ]
84. Accumulation and maintenance of information in evolution
Hledík M, Barton NH*, Tkačik G*
Proc Nat’l Acad Sci USA 119 (2022): e2123152119
[ site ] [ bioRxiv ]
83. Efficient coding theory of dynamic attentional modulation
Młynarski WF, Tkačik G
PLOS Biology 20 (2022): e3001889
[ site ] [ bioRxiv ] [ pdf ]
82. Eukaryotic gene regulation at equilibrium, or non?
Zoller B, Gregor T, Tkačik G
Curr Opin Syst Biol 31 (2022): 100435
[ site ] [ arXiv ]
81. Predicting bacterial promoter function and evolution from random sequences
Lagator M*, Sarikas S*, Steinrück M, Toledo-Aparicio D, Bollback JP, Guet CC*, Tkačik G*
eLife 11 (2022): e64543
[ site ] [ bioRxiv ]
80. The many bits of positional information
Tkačik G, Gregor T
Development 148 (2021): dev176065
[ site ] [ pdf ]
79. Token-driven totally asymmetric simple exclusion process
Kavčič B, Tkačik G
arxiv.org (2021): 2112.13558
[ arXiv ]
78. Inferring the function performed by a recurrent neural network
Chalk M, Tkačik G, Marre O
PLOS One 16 (2021): e0248940
[ site ] [ bioRxiv ]
77. Limited specificity of molecular interactions incurs an environment-dependent fitness cost in bacteria
Igler C, Fourcade C, Waldminghaus T, Pauler FM, Santhanam B, Tkačik G, Guet CC
bioRxiv.org (2021): 465141
[ bioRxiv ]
76. Statistical analysis and optimality of neural systems
Młynarski WF*, Hledík M*, Sokolowski TR, Tkačik G
Neuron 109 (2021): 1-15
[ site ] [ pdf ] [ bioRxiv ]
75. A minimal biophysical model of combined antibiotic action
Kavčič B, Tkačik G, Bollenbach T
PLOS Comput Biol 17 (2021): e1008529
[ site ] [ bioRxiv ]
74. Nonequilibrium models of optimal enhancer function
Grah R, Zoller B, Tkačik G
Proc Nat’l Acad Sci USA 117 (2020): 31614-31622
[ site ] [ pdf ] [ bioRxiv ]
73. Clustering of neural activity: a design principle for population codes
Berry MJ 2nd, Tkačik G
Frontiers Comput Neurosci 14 (2020): 20
[ site ] [ pdf ]
72. Gene amplification as a form of population-level gene expression regulation
Tomanek I*, Grah R*, Lagator M, Andersson AMC, Bollback JP, Tkačik G, Guet CC
Nat Ecol Evol 4 (2020): 612-625
[ site ] [ pdf ]
71. Mechanisms of drug interactions between translation-inhibiting antibiotics
Kavčič B, Tkačik G, Bollenbach T
Nature Communications 11 (2020): 4013
[ site ] [ pdf ] [ bioRxiv ]
70. Learning probabilistic neural representations with randomly connected circuits
Maoz O, Esteki MS, Tkačik G, Kiani R, Schneidman E
Proc Nat’l Acad Sci USA 117 (2020): 25066
[ pdf ] [ site ] [ bioRxiv ]
69. Optimal decoding of cellular identities in a genetic network
Petkova M*, Tkačik G*, Bialek W, Wieschaus EF, Gregor T
Cell 176 (2019): 844-855
[ site ] [ pdf ] [ arXiv ]
68. Action at a distance in transcriptional regulation
Bialek W, Gregor T, Tkačik G
arXiv.org (2019): 1912.08579
[ arXiv ]
67. Estimating information in time-varying signals
Cepeda-Humerez SA, Ruess J, Tkačik G
PLOS Comput Biol 15 (2019): e1007290
[ site ] [ arXiv ]
66. A tight upper bound on mutual information
Hledik M, Sokolowski TR, Tkačik G
IEEE Info Th Workshop (ITW) (2019).
[ pdf ] [ arXiv ]
65. Molecular noise shapes bacteria-phage ecologies
Ruess J, Pleska M, Guet CC, Tkačik G
PLOS Comput Biol 15 (2019): e1007168.
[ site ] [ bioRxiv ]
64. Evolutionary potential of transcription factors for gene regulatory rewiring
Igler C, Lagator M, Tkačik G, Bollback JP, Guet CC
Nature Ecol Evol 2 (2018): 1633-1643
[ site ] [ pdf ]
63. Statistical mechanics for metabolic networks during steady-state growth
De Martino D, Andersson AMC, Bergmiller T, Guet CC, Tkačik G
Nature Communications 9 (2018): 2988
[ site ] [ pdf ] [ arXiv ]
62. Population model learned on different stimulus ensembles predicts network responses in the retina
Ferrari U, Deny S, Chalk M, Tkačik G, Marre O, Mora T
Phys Rev E 98 (2018): 042410
[ site ] [ pdf ] [ arXiv ]
61. Distributed and dynamic intracellular organization of extracellular information
Granados AA, Pietsch JM, Cepeda-Humerez SA, Farquhar IL, Tkačik G, Swain PS
Proc Nat’l Acad Sci USA 115 (2018): 6088-6093
[ site ] [ pdf ] [ bioRxiv ]
60. Probabilistic models of individual and collective animal behavior
Bod’ova K, Mitchell GJ, Harpaz R, Schneidman E, Tkačik G
PLOS One 13 (2018): e0193049
[ site ] [ pdf ] [ arXiv ]
59. Towards a unified theory of efficient, predictive, and sparse coding
Chalk M, Marre O, Tkačik G
Proc Nat’l Acad Sci USA 115 (2018): 181-191
[ site ] [ pdf ] [ bioRxiv ]
58. Nonlinear decoding of a complex movie from the mammalian retina
Botella-Soler V, Deny S, Martius G, Marre O, Tkačik G
PLOS Comput Biol 14 (2018): e1006057
[ site ] [ pdf ] [ arXiv ]
57. Shaping bacterial population behavior through computer-interfaced control of individual cells
Chait R*, Ruess J*, Bergmiller T, Tkačik G, Guet CC
Nature Communications 8 (2017): 1535
[ site ] [ pdf ]
56. Maximum entropy models as a tool for building precise neural controls
Savin C, Tkačik G
Curr Opin Neurosci 46 (2017): 120-126
[ site ] [ pdf ]
55. Decoding of position in the developing neural tube from antiparallel morphogen gradients
Zagorski M, Tabata Y, Brandenberg N, Lutolf M, Tkačik G, Bollenbach T, Briscoe J, Kicheva A
Science 356 (2017): 1379-1383
[ site ] [ pdf ]
54. Biased partitioning of the multi-drug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity
Bergmiller T*, Andersson AMC*, Tomasek K, Balleza E, Kiviet DJ, Hauschild R, Tkačik G, Guet CC
Science 356 (2017): 311-315
[ site ] [ pdf ]
53. Discrete modes of social information processing predict individual behavior of fish in a group
Harpaz R, Tkačik G, Schneidman E
Proc Nat’l Acad Sci USA 114 (2017): 10149-10154
[ site ] [ pdf ] [ arXiv ]
52. Evolution of new regulatory functions on biophysically realistic fitness landscapes
Friedlander T*, Prizak R*, Barton NH, Tkačik G
Nature Communications 8 (2017): 216.
[ site ] [ pdf ] [ arXiv ]
51. Multiplexed computations in retinal ganglion cells of a single type
Deny S, Ferrari U, Mace E, Yger P, Caplette R, Picaud S, Tkačik G, Marre O
Nature Communications 8 (2017): 1964.
[ site ] [ pdf ] [ bioRxiv ]
50. Probabilistic models for neural populations that naturally capture global coupling and criticality
Humplik J, Tkačik G
PLOS Comput Biol 13 (2017): e1005763
[ site ] [ pdf ] [ arXiv ]
49. Error-robust modes of the retinal population code
Prentice JS, Marre O, Ioffe M, Loback AR, Tkačik G, Berry MJ 2nd
PLOS Comput Biol 12 (2016): e1005148
[ site ] [ pdf ]
48. Estimating nonlinear neural response functions using GP priors and Kronecker methods
Savin C, Tkačik G
Adv Neural Info Proc Syst 29 (2016), Lee et al eds.
[ site ]
47. Relevant sparse codes with variational information bottleneck
Chalk M, Marre O, Tkačik G
Adv Neural Info Proc Syst 29 (2016), Lee et al eds.
[ site ] [ arXiv ]
46. Beyond the French Flag model: Exploiting spatial and gene regulatory interactions for positional information
Hillenbrand P, Gerland U, Tkačik G
PLOS One 11 (2016): e0163628
[ site ] [ pdf ] [ arXiv ]
45. A general approximation for the dynamics of quantitative traits
Bod’ova K, Tkačik G, Barton NH
Genetics 202 (2016): 1523-1548
[ site ] [ pdf ] [ arXiv ]
44. Extending the dynamic range of transcription factor action by translational regulation
Sokolowski TR, Walczak AM, Bialek W, Tkačik G
Phys Rev E 93 (2016): 022404
[ site ] [ pdf ] [ arXiv ]
43. Intrinsic limits to gene regulation by global crosstalk
Friedlander T, Prizak R, Guet CC, Barton NH, Tkačik G
Nature Communications 7 (2016): 12307
[ site ] [ pdf ] [ arXiv ]
42. Information processing in biological systems
Tkačik G, Bialek W
Annu Rev Cond Matt Phys 7 (2016): 89-117
[ site ] [ pdf ] [ arXiv ]
41. Dynamics of transcription binding site evolution
Tugrul M, Paixao T, Barton NH, Tkačik G
PLOS Genetics 11 (2015): e1005639
[ site ] [ pdf ] [ arXiv ]
40. Stochastic proofreading mechanism alleviates crosstalk in transcriptional regulation
Cepeda-Humerez SA, Rieckh G, Tkačik G
Phys Rev Lett 115 (2015): 248101
[ site ] [ pdf ] [ arXiv ]
39. Optimizing information flow in small genetic networks. IV. Spatial coupling
Sokolowski TR, Tkačik G
Phys Rev E 91 (2015): 062710
[ site ] [ pdf ] [ arXiv ]
38. High accuracy decoding of dynamical motion from a large retinal population
Marre O, Botella-Soler V, Simmons KD, Mora T, Tkačik G, Berry MJ 2nd
PLOS Comp Biol 11 (2015): e1004304
[ site ] [ pdf ] [ arXiv ]
37. Positional information, positional error, and read-out precision in morphogenesis: a mathematical framework
Tkačik G, Dubuis JO, Petkova MD, Gregor T
Genetics 199 (2015): 39-59
[ site ] [ pdf ] [ arXiv ]
36. Thermodynamics for a network of neurons: Signatures of criticality
Tkačik G, Mora T, Marre O, Amodei D, Palmer SE, Berry MJ 2nd, Bialek W
Proc Nat’l Acad Sci USA 112 (2015): 11508-11513
[ site ] [ pdf ] [ arXiv ]
35. Variance predicts salience in central sensory processing
Hermundstad AM, Briguglio JJ, Conte MM, Victor JD, Balasubramanian V, Tkačik G
eLife (2014): 10.7554
[ site ] [ pdf ]
34. Searching for collective behavior in a large network of sensory neurons
Tkačik G, Marre O, Amodei D, Schneidman E, Bialek W, Berry MJ 2nd
PLOS Comp Biol 10 (2014): e1003408
[ site ] [ pdf ] [ arXiv ]
33. Adaptation to changes in higher-order stimulus statistics in the salamander retina
Tkačik G, Ghosh A, Schneidman E, Segev R
PLOS One 9 (2014): e85841
[ site ] [ pdf ] [ arXiv ]
32. Noise and information transmission in promoters with multiple internal states
Rieckh G, Tkačik G
Biophys J 106 (2014): 1194-1204
[ site ] [ pdf ] [ arXiv ]
31. Positional information, in bits
Dubuis JO*, Tkačik G*, Wieschaus EF, Gregor T, Bialek W
Proc Nat’l Acad Sci USA 110 (2013): 16301-16308
[ site ] [ pdf ] [ arXiv ]
30. Transformation of stimulus correlations by the retina
Simmons KD, Prentice JS, Tkačik G, Homann J, Yee HK, Palmer SE, Nelson PC, Balasubramanian V
PLOS Comp Biol 9 (2013): e1003344
[ site ] [ pdf ] [ arXiv ]
29. Stimulus-dependent maximum entropy models of neural population codes
Granot-Atedgi E*, Tkačik G*, Segev R, Schneidman E
PLOS Comp Bio 9 (2013): e1002922
[ site ] [ pdf ] [ arXiv ]
28. The simplest maximum entropy model for collective behavior in a neural network
Tkačik G, Marre O, Mora T, Amodei D, Berry MJ 2nd, Bialek W
J Stat Mech (2013): P03011
[ site ] [ pdf ] [ arXiv ]
27. A simple method for estimating the entropy of neural activity
Berry MJ 2nd, Tkačik G, Dubuis J, Marre O, Azerado da Silveira R
J Stat Mech (2013): P03015
[ site ] [ pdf ]
26. Retinal metric: a stimulus distance measure derived from population neural responses
Tkačik G, Granot-Atedgi E, Segev R, Schneidman E
Phys Rev Lett 110 (2013): 058104
[ site ] [ pdf ] [ Viewpoint (O Marre, A Destexhe) ] [ arXiv ]
25. Statistical thermodynamics of natural images
Stephens GJ, Mora T, Tkačik G, Bialek W
Phys Rev Lett 110 (2013): 018701
[ arxiv ] [ site ] [ pdf ]
24. Learning quadratic receptive fields from neural responses to natural stimuli
Rajan K, Marre O, Tkačik G
Neural Comput 25 (2013): 1661-1692
[ site ] [ arxiv ] [ pdf ]
23. Optimizing information flow in small genetic networks. III. A self-interacting gene
Tkačik G, Walczak AM, Bialek W
Phys Rev E 85 (2012): 041903
[ site ] [ pdf ]
22. The formation of the Bicoid morphogen gradient requires protein movement from anteriorly localized source
Little SC*, Tkačik G*, Kneeland TB, Wieschaus EF, Gregor T
PLOS Biology 9 (2011): e1000596
[ site ] [ pdf ]
21. Natural images from the birthplace of the human eye
Tkačik G, Garrigan P, Ratliff C, Milčinski G, Klein JM, Seyfarth LH, Sterling P, Brainard D, Balasubramanian V
PLOS One 6 (2011): e20409
[ site ] [ pdf ] [ ScienceNow ] [ PhysicsWorld ]
20. Information transmission in genetic regulatory networks: a review
Walczak AM, Tkačik G
J Phys Condens Matt 23 (2011): 153102
[ site ] [ pdf ]
19. Fast, scalable, Bayesian spike identification for multi-electrode arrays
Prentice JS, Homann J, Simmons KD, Tkačik G, Balasubramanian V, Nelson PC
PLOS One 6 (2011): e19884
[ site ] [ pdf ]
18. Local statistics in natural scenes predict the saliency of synthetic textures
Tkačik G, Prentice JS, Victor JD, Balasubramanian V
Proc Nat’l Acad Sci USA 107 (2010): 18149-54
[ site ] [ pdf ]
17. Optimal population coding by noisy spiking neurons
Tkačik G, Prentice JS, Balasubramanian V, Schneidman E
Proc Nat’l Acad Sci USA 107 (2010): 14419-24
[ site ] [ pdf ]
16. From statistical mechanics to information theory: Understanding biological information processing systems
Lecture notes for QECG 2010 Okinawa summer school
Tkačik G
arXiv.org (2010): 1006.4291
[ site ] [ pdf ]
15. Optimizing information flow in small genetic networks. II. Feed-forward interactions
Walczak AM, Tkačik G, Bialek W
Phys Rev E 81 (2010): 041905
[ site ] [ pdf ]
14. Spin glass models for a network of real neurons
Tkačik G, Schneidman E, Berry MJ II, Bialek W
arXiv.org (2009): 0912.5409
[ site ] [ pdf ]
arXiv.org (2006): q-bio/0611072
[ site ] [ pdf ]
13. The dynamics of adaptation on correlated fitness landscapes
Kryazhimskiy S*, Tkačik G*, Plotkin JB
Proc Nat’l Acad Sci USA 106 (2009): 18638
[ site ] [ pdf ]
12. Optimizing information flow in small genetic networks
Tkačik G, Walczak AM, Bialek W
Phys Rev E 80 (2009): 031920
[ site ] [ pdf ]
11. Cell Biology: Networks, Regulation, Pathways
Tkačik G, Bialek W
Encyclopedia of Complexity and Systems Science ed R Meyers, pp 719-741, Springer (2009), Berlin
[ site ] [ pdf ]
10. Information flow and optimization in transcriptional regulation
Tkačik G, Callan CG, Bialek W
Proc Nat’l Acad Sci USA 105 (2008): 12265-12270
[ site ] [ pdf ] [ News and views (E Siggia) ]
9. Information capacity of genetic regulatory elements
Tkačik G, Callan CG, Bialek W
Phys Rev E 78 (2008): 011910
[ site ] [ pdf ]
8. Diffusion, dimensionality and noise in transcriptional regulation
Tkačik G, Bialek W
Phys Rev E 79 (2008): 051901
[ site ] [ pdf ] [ Viewpoint (R Metzler) ]
7. Decoding spike timing: the differential reverse-correlation method
Tkačik G, Magnasco MO
Biosystems 93 (2008): 90-100
[ site ] [ pdf ]
6. Information flow in biological networks
Tkačik G
Thesis, Princeton University (2007)
[ pdf ]
5. Faster solutions to the inverse pairwise Ising problem
Broderick T, Dudik M, Tkačik G, Schapire RE, Bialek W
arXiv.org (2007): 0712.2437
[ site ] [ pdf ]
4. The role of input noise in transcriptional regulation
Tkačik G, Gregor T, Bialek W
PLOS One 3 (2007): e2774
[ site ] [ pdf ]
3. Precise physical models of protein-DNA interaction from high-throughput data
Kinney JB, Tkačik G, Callan CG
Proc Nat’l Acad Sci USA 104 (2007): 501-506
[ site ] [ pdf ]
2. Information-based clustering
Slonim N, Atwal GS, Tkačik G, Bialek W
Proc Nat’l Acad Sci USA 102 (2005): 18297
[ site ] [ pdf ]
1. Estimating mutual and multi-information in large networks
Slonim N, Atwal GS, Tkačik G, Bialek W
arXiv.org (2005): cs.it/0502017
[ site ] [ pdf ]